Search results for " hepatocytes"

showing 10 items of 24 documents

Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib

2017

IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced …

0301 basic medicineRuxolitinibruxolitinibPhysiologySystems biologyRegulatorBiologyPharmacology: Biochemistry biophysics & molecular biology [F05] [Life sciences]lcsh:Physiology03 medical and health sciencesMediatoracute phase responsePhysiology (medical)medicineSOCS3primary hepatocytes: Biochimie biophysique & biologie moléculaire [F05] [Sciences du vivant]Original ResearchIL-6lcsh:QP1-981Acute-phase proteinmathematical modelingJAK-STAT signaling pathwayCell biology030104 developmental biologySignal transductionmedicine.drugFrontiers in Physiology
researchProduct

Effects of a high-fat diet on energy metabolism and ROS production in rat liver.

2011

International audience; BACKGROUND & AIMS: A high-fat diet affects liver metabolism, leading to steatosis, a complex disorder related to insulin resistance and mitochondrial alterations. Steatosis is still poorly understood since diverse effects have been reported, depending on the different experimental models used. METHODS: We hereby report the effects of an 8 week high-fat diet on liver energy metabolism in a rat model, investigated in both isolated mitochondria and hepatocytes. RESULTS: Liver mass was unchanged but lipid content and composition were markedly affected. State-3 mitochondrial oxidative phosphorylation was inhibited, contrasting with unaffected cytochrome content. Oxidative…

Mitochondrial ROSMaleTranscription GeneticMESH : Reactive Oxygen SpeciesMitochondria LiverMESH : HepatocytesMitochondrionOxidative PhosphorylationMESH: Hepatocytes0302 clinical medicineMESH: Membrane Potential MitochondrialCitrate synthaseMESH: AnimalsBeta oxidationMESH : Electron Transport2. Zero hungerMembrane Potential Mitochondrial0303 health sciencesMESH : RatsAdenine nucleotide translocatorMESH: Energy MetabolismMESH: Reactive Oxygen SpeciesLipidsBiochemistryLiverMESH: Dietary FatsMitochondrial matrix030220 oncology & carcinogenesisBody CompositionMESH : Oxidative PhosphorylationATP–ADP translocaseMESH: Mitochondria LiverMESH: RatsMESH : Body CompositionMESH : MaleOxidative phosphorylationBiologyMESH : Rats WistarElectron Transport03 medical and health sciencesMESH: Oxidative Phosphorylation[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRats WistarMESH: Electron Transport[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyHepatologyMESH: Transcription GeneticMESH : Transcription GeneticMESH : LiverMESH : LipidsMESH: Body CompositionMESH: Rats WistarMESH: LipidsDietary FatsMESH: MaleRatsMESH : Energy MetabolismMESH : Membrane Potential MitochondrialMESH : Mitochondria Liverbiology.proteinHepatocytesMESH : AnimalsEnergy MetabolismReactive Oxygen SpeciesMESH : Dietary FatsMESH: Liver
researchProduct

In vitro evidences of epithelial to mesenchymal transition in low cell-density cultured human fetal hepatocytes

2017

Abstract Culturing fetal hepatocytes in high cell-density allowed stabilization of the hepatocyte phenotype up to 8 weeks, including the maintenance of liver-specific functions. On the other hand, when cultured at low cell-density, fetal hepatocytes underwent morphological modifications and acquired fibroblastic morphology. Since a switch from E-cadherin to vimentin expression accompanied these changes, we hypothesized the occurrence of epithelial-to-mesenchymal transition when fetal hepatocytes were cultured at low cell-density. Changes in gene expressionsuch as up-regulation of fibrosis-related geneswere also observed, suggesting that the low cell-density culture system promoted the acqui…

Liver Cirrhosis0301 basic medicineEpithelial-Mesenchymal TransitionLiver fibrosisLiver fibrosisCell Culture TechniquesBiophysicsCell CountBiologyPrimary culturesBiochemistry03 medical and health sciencesFetal hepatocytesmedicineHumansEpithelial–mesenchymal transitionMolecular BiologyGeneCells CulturedEpithelial to mesenchymal transitionFetusTransition (genetics)Cell BiologyPhenotypeIn vitroCell biology030104 developmental biologymedicine.anatomical_structureLiverHepatocyteImmunologyHepatocytesBiochemical and Biophysical Research Communications
researchProduct

Mboat7 down-regulation by hyper-insulinemia induces fat accumulation in hepatocytes.

2020

Background: Naturally occurring variation in Membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), encoding for an enzyme involved in phosphatidylinositol acyl-chain remodelling, has been associated with fatty liver and hepatic disorders. Here, we examined the relationship between hepatic Mboat7 down-regulation and fat accumulation. Methods: Hepatic MBOAT7 expression was surveyed in 119 obese individuals and in experimental models. MBOAT7 was acutely silenced by antisense oligonucleotides in C57Bl/6 mice, and by CRISPR/Cas9 in HepG2 hepatocytes. Findings: In obese individuals, hepatic MBOAT7 mRNA decreased from normal liver to steatohepatitis, independently of diabetes, inflammatio…

Research paperTGFβ Transforming Growth Factor BetaIntracellular SpaceCRISPR Clustered Regularly Interspaced Short Palindromic RepeatshHEPS Human HepatocytesMice0302 clinical medicineLPIAT1DAG Diacylglyceroli.p. Intraperitonealmedia_commonFatty AcidsGeneral Medicine3. Good health030220 oncology & carcinogenesisHOMA-IR homeostasis Model Assessment of Insulin ResistanceMPO morpholinolcsh:Medicine (General)medicine.medical_specialtyPE Phosphatidyl-EthanolamineNashGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesTNFα tumor Necrosis Factor AlphaLDL Low Density LipoproteinsHyperinsulinismNAFLDSD Standard Dietmedia_common.cataloged_instanceHumansCPT1 Carnitine Palmitoyltransferase IPhosphatidylinositolGene SilencingEuropean unionVLDL Very Low Density Lipoproteinlcsh:RhHSC Human Hepatic Stellate Cellsmedicine.diseaseLipid MetabolismOA Oleic AcidCI Confidence IntervalMboat7 Membrane bound O-acyltransferase domain containing 7MCD methionine choline deficient diet030104 developmental biologyEndocrinologychemistryCDP Cytidine-DiphosphateFOXO1 Forkhead Box protein O1NAFLD nonalcoholic fatty liver diseaseSteatohepatitisBMI Body Mass IndexCL CardiolipinAcyltransferases0301 basic medicineAlcoholic liver diseaseCXCL10 C-X-C Motif Chemokine 10lcsh:Medicinechemistry.chemical_compoundNon-alcoholic Fatty Liver DiseaseIFG Impaired Fasting GlucoseAPOB Apolipoprotein BNonalcoholic fatty liver diseasePIP Phosphatidyl-Inositol-PhosphateSteatohepatitisqRT-PCR quantitative Real Time Polymerase Chain ReactionMice Knockoutlcsh:R5-920ORO Oil Red O StainingPI PhosphatidylinositolFatty liverTM6SF2 Transmembrane 6 Superfamily Member 2PhospholipidTAG TriglyceridesNASH Nonalcoholic SteatohepatitisLipogenesisLPA Lyso-Phosphatidic AcidPhosphatidylinositolSignal TransductionPS Phosphatidyl-SerinePA Palmitic AcidALD alcoholic liver diseasePC Phosphatidylcholinei.v. IntravenousFATP1 Fatty Acid Transport Protein 1Models BiologicalInternal medicinemedicineAnimalsNonalcoholic fatty liver diseasePPARα Peroxisome Proliferator-Activated Receptor alphaObesityG3P Glyceraldehyde-3-PhosphateSREBP1c Sterol Regulatory Element-Binding Protein 1HDL High Density Lipoproteinsbusiness.industryPI3K Phosphatidylinositol 3 KinaseMembrane ProteinsNHEJ Non-Homologues End JoiningPNPLA3 Patatin-like Phospholipase Domain-containing-3MTTP Microsomal Triglyceride Transfer ProteinLPIAT1 Lysophosphatidylinositol Acyltransferase 1TMC4 Transmembrane Channel-Like 4Disease Models AnimalGene Expression RegulationHepatocytesFOXA2 Forkhead Box A2mTOR mammalian target of RapamycinSteatosisInsulin ResistancebusinessPG Phosphatidyl-GlycerolFABP1 Fatty Acid-Binding Protein 1 FAS Fatty Acid SynthaseT2DM Type 2 Diabetes MellitusEBioMedicine
researchProduct

Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation.

2009

Background & Aims: In each hepatocyte, the specific repertoire of gene expression is influenced by its exact location along the portocentrovenular axis of the hepatic lobule and provides a reason for the liver functions compartmentalization defined "metabolic zonation." So far, few molecular players controlling genetic programs of periportal (PP) and perivenular (PV) hepatocytes have been identified; the elucidation of zonation mechanisms remains a challenge for experimental hepatology. Recently, a key role in induction and maintenance of the hepatocyte heterogeneity has been ascribed to Wnt/β-catenin pathway. We sought to clarify how this wide-ranging stimulus integrates with hepatocyte s…

Beta-cateninWnt ProteinCellular differentiationBlotting WesternLiver Stem CellFluorescent Antibody TechniqueMice TransgenicBiologyTransfectionSensitivity and SpecificityAnimals; Blotting Western; Cell Differentiation; Cell Proliferation; Cells Cultured; Fluorescent Antibody Technique; Hepatocyte Nuclear Factor 4; Hepatocytes; Humans; Immunoprecipitation; Mice; Mice Knockout; Mice Transgenic; Reverse Transcriptase Polymerase Chain Reaction; Sensitivity and Specificity; Signal Transduction; Transfection; Wnt Proteins; beta Catenin; GastroenterologyMiceliver zonation; wnt signalling; beta catenin; hnf4Gene expressionmedicineAnimalsHumansImmunoprecipitationHepatocyteCells Culturedbeta CateninCell ProliferationMice KnockoutHepatologyAnimalReverse Transcriptase Polymerase Chain ReactionGastroenterologyWnt signaling pathwayCell DifferentiationMolecular biologyWnt Proteinsmedicine.anatomical_structureHepatocyte nuclear factor 4Hepatocyte Nuclear Factor 4Hepatocytebiology.proteinHepatocytesChromatin immunoprecipitationHumanSignal TransductionGastroenterology
researchProduct

The desert gerbil Psammomys obesus as a model for metformin-sensitive nutritional type 2 diabetes to protect hepatocellular metabolic damage: Impact …

2017

Introduction While metformin (MET) is the most widely prescribed antidiabetic drug worldwide, its beneficial effects in Psammomys obesus (P. obesus), a rodent model that mimics most of the metabolic features of human diabetes, have not been explored thoroughly. Here, we sought to investigate whether MET might improve insulin sensitivity, glucose homeostasis, lipid profile as well as cellular redox and energy balance in P. obesus maintained on a high energy diet (HED). Materials and methods P. obesus gerbils were randomly assigned to receive either a natural diet (ND) consisting of halophytic plants (control group) or a HED (diabetic group) for a period of 24 weeks. MET (50 mg/kg per os) was…

Male0301 basic medicinePhysiologymedicine.medical_treatment[SDV]Life Sciences [q-bio]Body-WeightRespiratory chainlcsh:MedicineMitochondria LiverBiochemistrychemistry.chemical_compoundLiver Parenchymal-CellsEndocrinologyGlucose MetabolismAnimal CellsKetogenesisMedicine and Health SciencesElectrochemistryGlucose homeostasisGut Microbiotalcsh:ScienceEnergy-Producing OrganellesComputingMilieux_MISCELLANEOUS2. Zero hungerMultidisciplinaryOrganic CompoundsMonosaccharidesFatty AcidsChemical ReactionsLipidsMetforminMitochondria3. Good healthChemistryPhysiological ParametersLiverPhysical SciencesCarbohydrate MetabolismCellular Structures and OrganellesCellular TypesAnatomyOxidation-ReductionResearch Articlemedicine.medical_specialtyIsolated Rat HepatocytesEndocrine DisordersCarbohydratesBioenergeticsBiologyCarbohydrate metabolism03 medical and health sciencesInsulin resistanceInternal medicineFood-IntakeDiabetes MellitusmedicineAnimalsHypoglycemic AgentsObesityRespiratory-Chain[ SDV ] Life Sciences [q-bio]Fatty acid metabolismInsulinBody WeightOrganic Chemistrylcsh:RChemical CompoundsGluconeogenesisBiology and Life SciencesCell Biologymedicine.diseaseGlucose-6-Phosphate HydrolysisDisease Models AnimalGlucoseMetabolism030104 developmental biologyEndocrinologyDiabetes Mellitus Type 2GluconeogenesischemistryMetabolic DisordersHepatocyteslcsh:QInsulin ResistanceGerbillinaeGlucose-ProductionFatty-Acid-MetabolismOxidation-Reduction Reactions
researchProduct

Kinetics of tienilic acid bioactivation and functional generation of drug–protein adducts in intact rat hepatocytes

2005

13 pages; Drug-induced autoimmune hepatitis is among the most severe hepatic idiosyncratic adverse drug reactions. Considered multifactorial, the disease combines immunological and metabolic aspects, the latter being to date much better known. As for many other model drugs, studies on tienilic acid (TA)-induced hepatitis have evidenced the existence of bioactivation during the hepatic oxidation of the drug, allowing the identification of the neoantigen of anti-LKM2 autoantibodies and the pathway responsible for its formation. However, most of these results are based on the use of microsomal fractions whose relevance to the liver in vivo still needs to be established. In the more complex int…

MaleTicrynafen[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutoimmune hepatitisPlasma protein bindingHydroxylationBiochemistryRats Sprague-Dawley03 medical and health scienceschemistry.chemical_compound0302 clinical medicineIn vivoCYP[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineAnimalsPrimary cultured hepatocytesTienilic acid[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCytochrome P450 Family 2[SDV.BC] Life Sciences [q-bio]/Cellular BiologyBiotransformationCells Cultured030304 developmental biologyPharmacologyHepatitis0303 health sciencesDrug bioactivationChemistryGlutathionemedicine.diseaseGlutathioneIn vitroRats3. Good health[SDV.TOX] Life Sciences [q-bio]/Toxicologymedicine.anatomical_structureSteroid 16-alpha-HydroxylaseBiochemistryTienilic acid[SDV.TOX]Life Sciences [q-bio]/Toxicology030220 oncology & carcinogenesisHepatocyteHepatocytesAryl Hydrocarbon HydroxylasesDrug–protein adductsProtein Bindingmedicine.drugBiochemical Pharmacology
researchProduct

Isolation and characterization of a murine resident liver stem cell.

2008

Increasing evidence provides support that mammalian liver contains stem/progenitor cells, but their molecular phenotype, embryological derivation, biology and their role in liver cell turnover and regeneration remain to be further clarified. In this study, we report the isolation, characterization and reproducible establishment in line of a resident liver stem cell (RLSC) with immunophenotype and differentiative potentiality distinct from other previously described liver precursor/stem cells. RLSCs, derived from fetal and neonatal murine livers as well as from immortalized hepatocytic MMH lines and established in lines, are Sca+, CD34-, CD45-, alpha-fetoprotein+ and albumin-. This molecular…

Cellular differentiationLiver Stem CellCell SeparationBiologyImmunophenotypingLiver progenitor cellsMiceChondrocyteshepatocyteAnimalsCell LineageProgenitor cellLiver progenitor cells; hepatocyte; differentiationMolecular BiologyCells CulturedMultipotent Stem CellOligonucleotide Array Sequence AnalysisNeuronsOsteoblastsAnimalOligonucleotide Array Sequence AnalysiLiver cellOsteoblastGene Expression ProfilingMultipotent Stem CellsMesenchymal stem cellCell DifferentiationCell BiologydifferentiationNeuronChondrocyteMolecular biologyLiver regenerationCell biologyPhenotypeAnimals NewbornLiverMultipotent Stem CellHepatocytesStem cellAnimals; Animals Newborn; Cell Differentiation; Cell Lineage; Cell Separation; Cells Cultured; Chondrocytes; Gene Expression Profiling; Hepatocytes; Immunophenotyping; Liver; Mice; Multipotent Stem Cells; Neurons; Oligonucleotide Array Sequence Analysis; Osteoblasts; Phenotype; Molecular Biology; Cell BiologyCell death and differentiation
researchProduct

Coagulation and fibrosis in chronic liver disease.

2008

In the hepatic tissue repair mechanism, hepatic stellate cells (HSCs) are recruited at the site of injury and their changes reflect paracrine stimulation by all neighbouring cell types, including sinusoidal endothelial cells, Kupffer cells, hepatocytes, platelets and leucocytes. Thrombin converts circulating fibrinogen to fibrin, promotes platelet aggregation, is a potent activator of endothelial cells, acts as a chemoattractant for inflammatory cells and is a mitogen and chemoattractant for fibroblasts and vascular smooth muscle cells. Most of the cellular effects elicited by thrombin are mediated via a family of widely expressed G-protein-coupled receptors termed protease activated recept…

Liver CirrhosisMaleKupffer CellsReceptors Proteinase-ActivatedThrombin liver fibrosisProteinase-ActivatedChronic liver diseaseFibrinLiver diseaseThrombinFibrosisReceptorsHepatic Stellate CellsmedicineAnimalsHumansPlateletReceptorBlood CoagulationWound HealingAnimals; Anticoagulants; Blood Coagulation; Chronic Disease; Disease Progression; Endothelial Cells; Female; Hepatic Stellate Cells; Hepatocytes; Humans; Kupffer Cells; Liver Cirrhosis; Liver Diseases; Male; Rats; Receptors Proteinase-Activated; Receptors Thrombin; Thrombin; Wound Healing; Gastroenterologybiologybusiness.industryLiver DiseasesThrombinGastroenterologyAnticoagulantsEndothelial Cellsmedicine.diseaseRatsChronic DiseaseImmunologyDisease ProgressionHepatocytesbiology.proteinHepatic stellate cellCancer researchFemaleReceptors Thrombinbusinessmedicine.drug
researchProduct

Coordinated induction of drug transporters and phase I and II metabolism in human liver slices

2008

Although regulation of phase I drug metabolism in human liver is relatively well studied, the regulation of phase II enzymes and of drug transporters is incompletely characterized. Therefore, we used human liver slices to investigate the PXR, CAR and AhR-mediated induction of drug transporters and phase I and II metabolic enzymes. Precision-cut human liver slices were incubated for 5 or 24 h with prototypical inducers: phenobarbital (PB) (50 mu M) for CAR, beta-naphthoflavone (BNF) (25 mu M) for AhR, and rifampicin (RIF) (10 mu M) for PXR, and gene expression of the phase I enzymes CYP1A1, 1A2, 3A4, 3A5, 2136, 2A6, the phase II enzymes UGT1A1 and 1A6, and the transporters MRP2, MDR1, BSEP, …

DIFFERENTIAL REGULATIONQUANTITATIVE RT-PCRRAT-LIVERGene ExpressionPharmaceutical Sciencedrug transportersIn Vitro TechniquesPharmacologydigestive systemCytochrome P-450 Enzyme SystemUDP-GLUCURONOSYLTRANSFERASE 1A1Constitutive androstane receptorHumansSTELLATE CELL ACTIVATIONEnzyme inducerinductionliver slicesCONSTITUTIVE ANDROSTANE RECEPTORchemistry.chemical_classificationPregnane X receptorbiologyCYP3A4Multidrug resistance-associated protein 2TransporterPRIMARY HUMAN HEPATOCYTESMetabolic Detoxication Phase IIdrug metabolismEnzymeLiverPharmaceutical PreparationsBiochemistrychemistryEnzyme Inductionbiology.proteinMetabolic Detoxication Phase IPREGNANE-X-RECEPTORCarrier ProteinsPROTOTYPICAL INDUCERSDrug metabolismBILE-ACIDEuropean Journal of Pharmaceutical Sciences
researchProduct